viernes, 22 de mayo de 2020
WPSeku V0.4 - Wordpress Security Scanner
Este resumen no está disponible. Haz
clic en este enlace para ver la entrada.
jueves, 21 de mayo de 2020
Brutality: A Fuzzer For Any GET Entries
Brutalitys' Features
Brutality's Installtion
How to use Brutality?
Examples:
Use default wordlist with 5 threads (-t 5) and hide 404 messages (–e 404) to fuzz the given URL (http://192.168.1.1/FUZZ):
Use common_pass.txt wordlist (-f ./wordlist/common_pass.txt), remove response with 6969 length (-r 6969) and proxy at 127.0.0.1:8080 (-p http://127.0.0.1:8080) to fuzz the given URL (http://192.168.1.1/brute.php?username=admin&password=FUZZ&submit=submit#):
ToDo List:
Continue reading
- Multi-threading on demand.
- Fuzzing, bruteforcing GET params.
- Find admin panels.
- Colored output.
- Hide results by return code, word numbers.
- Proxy support.
- Big wordlist.
Brutality's Installtion
How to use Brutality?
Examples:
Use default wordlist with 5 threads (-t 5) and hide 404 messages (–e 404) to fuzz the given URL (http://192.168.1.1/FUZZ):
python brutality.py -u 'http://192.168.1.1/FUZZ' -t 5 -e 404
Use common_pass.txt wordlist (-f ./wordlist/common_pass.txt), remove response with 6969 length (-r 6969) and proxy at 127.0.0.1:8080 (-p http://127.0.0.1:8080) to fuzz the given URL (http://192.168.1.1/brute.php?username=admin&password=FUZZ&submit=submit#):
python brutality.py -u 'http://192.168.1.1/brute.php?username=admin&password=FUZZ&submit=submit#' -f ./wordlist/common_pass.txt -r 6969 -p http://127.0.0.1:8080
ToDo List:
- Smooth output.
- Export file report.
- Modularization.
Continue reading
System Hacking: Password Cracking Techniques And Types Of Passwords
This blog based on two major concepts:
- Understand password-cracking techniques
- Understand different types of passwords
The simplest way to crack the passwords
The first step is to access the system is that you should know how to crack the password of the target system. Passwords are the key element of information require to access the system, and users also selects passwords that are easy to guess such as mostly people has a passwords of their pet's name or room number etc to help them remember it. Because of this human factor, most password guessing is successful if some information is known about the target. Information gathering and reconnaissance can help give away information that will help a hacker guess a user's password.Once a password is guessed or cracked, it can be the launching point for escalating privileges, executing applications, hiding files, and covering tracks. If guessing a password fails, then passwords may be cracked manually or with automated tools such as a dictionary or brute-force method.
Types of Passwords
- Only numbers
- Only letters
- Only special characters
- Letters and numbers
- Only letters and special characters
- Numbers, letters and special characters
- Must not contain any part of the user's account name
- Must have a minimum of eight characters
- Must contain characters from at least three of the following categories:
- Non alphanumeric symbols ($,:"%@!#)
- Numbers
- Uppercase letters
- Lowercase letters
Passive Online
Eavesdropping on network password exchanges. Passive online attacksinclude sniffing, man-in-the-middle, and replay attacks. Moreover, a passive online attack is also known as sniffing the password on a wired or wireless network. A passive attack is not detectable to the end user. The password is captured during the authentication process and can then be compared against a dictionary file or word list. User account passwords are commonly hashed or encrypted when sent on the network to prevent unauthorized access and use. If the password is protected by encryption or hashing, special tools in the hacker's toolkit can be used to break the algorithm.
Another passive online attack is known as man-in-the-middle (MITM). In a MITM attack, the hacker intercepts the authentication request and forwards it to the server. By inserting a sniffer between the client and the server, the hacker is able to sniff both connections and capture passwords in the process.
A replay attack is also a passive online attack; it occurs when the hacker intercepts the password en route to the authentication server and then captures and resend the authentication packets for later authentication. In this manner, the hacker doesn't have to break the password or learn the password through MITM but rather captures the password and reuses the password-authentication packets later to authenticate as the client.
Active Online
Guessing the Administrator password. Active online attacks include auto-mated password guessing. Moreover, The easiest way to gain administrator-level access to a system is to guess a simple password assuming the administrator used a simple password. Password guessing is an active online attack. It relies on the human factor involved in password creation and only works on weak
passwords.
Assuming that the NetBIOS TCP 139 port is open, the most effective method of breaking into a Windows NT or Windows 2000 system is password guessing. This is done by attempting to connect to an enumerated share ( IPC$ or C$ ) and trying a username and password combination. The most commonly used Administrator account and password combinations are words like Admin, Administrator, Sysadmin, or Password, or a null password.
A hacker may first try to connect to a default Admin$ , C$ , or C:\Windows share. To connect to the hidden C: drive share, for example, type the following command in the Run field (Start ➪ Run):
\\ip_address\c$
Automated programs can quickly generate dictionary files, word lists, or every possible combination of letters, numbers, and special characters and then attempt to log on using those credentials. Most systems prevent this type of attack by setting a maximum number of login attempts on a system before the account is locked.
In the following sections, we'll discuss how hackers can perform automated password guessing more closely, as well as countermeasures to such attacks.
Performing Automated Password Guessing
To speed up the guessing of a password, hackers use automated tools. An easy process for automating password guessing is to use the Windows shell commands based on the standard NET USE syntax. To create a simple automated password-guessing script, perform the following steps:- Create a simple username and password file using Windows Notepad. Automated tools such as the Dictionary Generator are available to create this word list. Save the file on the C: drive as credentials.txt.
- Pipe this file using the FOR command: C:\> FOR /F "token=1, 2*" %i in (credentials.txt)
- Type net use \\targetIP\IPC$ %i /u: %j to use the credentials.txt file to attempt to log on to the target system's hidden share.
Offline Attacks
Offline attacks are performed from a location other than the actual computer where the passwords reside or were used. Offline attacks usually require physical access to the computer and copying the password file from the system onto removable media. The hacker then takes the file to another computer to perform the cracking. Several types of offline password attacks exist.Types of Attack | Characteristics | Password Example |
---|---|---|
Dictionary attack | Attempts to use passwords from a list of dictionary words | Administrator |
Hybrid attack | Substitutes numbers of symbols for password characters | Adm1n1strator |
Brute-force attack | Tries all possible combinations of letters, numbers, and special characters | Ms!tr245@F5a |
A dictionary attack is the simplest and quickest type of attack. It's used to identify a password that is an actual word, which can be found in a dictionary. Most commonly, the attack uses a dictionary file of possible words, which is hashed using the same algorithm used by the authentication process. Then, the hashed dictionary words are compared with hashed passwords as the user logs on, or with passwords stored in a file on the server. The dictionary attack works only if the password is an actual dictionary word; therefore, this type of attack has some limitations. It can't be used against strong passwords containing numbers or other symbols.
A hybrid attack is the next level of attack a hacker attempts if the password can't be found using a dictionary attack. The hybrid attack starts with a dictionary file and substitutes numbers and symbols for characters in the password. For example, many users add the number 1 to the end of their password to meet strong password requirements. A hybrid attack is designed to find those types of anomalies in passwords.
The most time-consuming type of attack is a brute-force attack, which tries every possible combination of uppercase and lowercase letters, numbers, and symbols. A brute-force attack is the slowest of the three types of attacks because of the many possible combinations of characters in the password. However, brute force is effective; given enough time and processing power, all passwords can eventually be identified.
More articles
Vlang Binary Debugging
Why vlang? V is a featured, productive, safe and confortable language highly compatible with c, that generates neat binaries with c-speed, the decompilation also seems quite clear as c code.
https://vlang.io/
After open the binary with radare in debug mode "-d" we proceed to do the binary recursive analysis with "aaaa" the more a's the more deep analys.
The function names are modified when the binary is crafted, if we have a function named hello in a module named main we will have the symbol main__hello, but we can locate them quicly thanks to radare's grep done with "~" token in this case applied to the "afl" command which lists all the symbols.
Being in debug mode we can use "d*" commands, for example "db" for breakpointing the function and then "dc" to start or continue execution.
Let's dissasemble the function with "pD" command, it also displays the function variables and arguments as well, note also the xref "call xref from main"
Let's take a look to the function arguments, radare detect's this three 64bits registers used on the function.
Actually the function parameter is rsi that contains a testing html to test the href extraction algorithm.
The string structure is quite simple and it's plenty of implemented methods.
With F8 we can step over the code as we were in ollydbg on linux.
Note the rip marker sliding into the code.
We can recognize the aray creations, and the s.index_after() function used to find substrings since a specific position.
If we take a look de dissasembly we sill see quite a few calls to tos3() functions.
Those functions are involved in string initialization, and implements safety checks.
In this case I have a crash in my V code and I want to know what is crashing, just continue the execution with "dc" and see what poits the rip register.
In visual mode "V" we can see previous instructions to figure out the arguments and state.
We've located the crash on the substring operation which is something like "s2 := s1[a..b]" probably one of the arguments of the substring is out of bounds but luckily the V language has safety checks and is a controlled termination:
Switching the basic block view "space" we can see the execution flow, in this case we know the loops and branches because we have the code but this view also we can see the tos3 parameter "href=" which is useful to locate the position on the code.
When it reach the substr, we can see the parameters with "tab" command.
Looking the implementation the radare parameter calculation is quite exact.
Let's check the param values:
so the indexes are from 0x0e to 0x24 which are inside the buffer, lets continue to next iteration,
if we set a breakpoint and check every iteration, on latest iteration before the crash we have the values 0x2c to 0x70 with overflows the buffer and produces a controlled termination of the v compiled process.
https://vlang.io/
After open the binary with radare in debug mode "-d" we proceed to do the binary recursive analysis with "aaaa" the more a's the more deep analys.
The function names are modified when the binary is crafted, if we have a function named hello in a module named main we will have the symbol main__hello, but we can locate them quicly thanks to radare's grep done with "~" token in this case applied to the "afl" command which lists all the symbols.
Being in debug mode we can use "d*" commands, for example "db" for breakpointing the function and then "dc" to start or continue execution.
Let's dissasemble the function with "pD" command, it also displays the function variables and arguments as well, note also the xref "call xref from main"
Let's take a look to the function arguments, radare detect's this three 64bits registers used on the function.
Actually the function parameter is rsi that contains a testing html to test the href extraction algorithm.
The string structure is quite simple and it's plenty of implemented methods.
With F8 we can step over the code as we were in ollydbg on linux.
Note the rip marker sliding into the code.
We can recognize the aray creations, and the s.index_after() function used to find substrings since a specific position.
If we take a look de dissasembly we sill see quite a few calls to tos3() functions.
Those functions are involved in string initialization, and implements safety checks.
- tos(string, len)
- tos2(byteptr)
- tos3(charptr)
In this case I have a crash in my V code and I want to know what is crashing, just continue the execution with "dc" and see what poits the rip register.
In visual mode "V" we can see previous instructions to figure out the arguments and state.
We've located the crash on the substring operation which is something like "s2 := s1[a..b]" probably one of the arguments of the substring is out of bounds but luckily the V language has safety checks and is a controlled termination:
Switching the basic block view "space" we can see the execution flow, in this case we know the loops and branches because we have the code but this view also we can see the tos3 parameter "href=" which is useful to locate the position on the code.
When it reach the substr, we can see the parameters with "tab" command.
Looking the implementation the radare parameter calculation is quite exact.
Let's check the param values:
so the indexes are from 0x0e to 0x24 which are inside the buffer, lets continue to next iteration,
if we set a breakpoint and check every iteration, on latest iteration before the crash we have the values 0x2c to 0x70 with overflows the buffer and produces a controlled termination of the v compiled process.
Related links
Top 15 Best Operating System Professional Hackers Use
Top 15 Best Operating System Professional Hackers Use
A hacker is someone who seeks and exploits the weaknesses of a computer system or network computing. Hackers may be motivated by a multitude of reasons, such as profit, protest, challenge, enjoyment or to assess these weaknesses to help in removing them.
The listed operating systems are based on the Linux kernel so it is all free operating systems.
1. Kali Linux
Kali Linux maintained and funded by Offensive Security Ltd. and it is first on our list. Kali Linux is a Debian-derived Linux distribution designed for digital forensics and penetration testing. It was developed by Mati Aharoni and Devon Kearns of Offensive Security through rewriting BackTrack, its previous forensics Linux distribution based on Ubuntu. Kali Linux has a specific project for the withdrawal of compatibility and portability of Android-specific devices, called Kali Linux NetHunter. It is the first open test platform penetration Source for Nexus Android devices, created as a joint effort between the member of the Kali "BinkyBear" Security and offensive community. It supports Wireless 802.11 frame injection, one-click configurations MANA Evil access point, keyboard HID (Teensy as attacks), as well as attacks MITM USB Mala.
2. Back Box
Back Box is an evaluation penetration testing Linux distribution and Ubuntu-based security aimed at providing an analysis of computer network systems and toolkit. Desktop environment back box includes a complete set of tools needed for ethical hacking and security testing.
3. Parrot Security OS
Parrot Security OS is a GNU / Linux distribution based on Debian. Fue built in order to perform penetration tests (safety information), vulnerability assessment and mitigation, Computer Forensics and Anonymous Surfing. Ha been developed by the team of Frozen box.
Parrot is based on the stable branch (Jessie) of Debian, a Linux 4.1 kernel hardened customized with a branch grsecurity patched available. The desktop environment is MATE fork of Gnome 2, and the default display manager is LightDM. The project is certified to run on machines with 265MB of RAM minimum follow and it is suitable for both 32-bit (i386) and 64-bit (amd64), with a special edition that works on 32-bit machines of age (486). Moreover, the project is available for Armel and armhf architectures. It even offers an edition (both 32 bit and 64 bit) developed for servers only for pen testing cloud.
4. Live Hacking OS
Live Hacking OS is a Linux distribution packed with tools and utilities for ethical hacking, penetration testing, and countermeasure verification. It includes embedded GUI GNOME user. There is a second variation available which has only the command line and requires much fewer hardware requirements.
5. DEFT Linux
DEFT stands for Digital Evidence and Forensic Toolkit and it is a distribution of Linux open source software built around the DART (Toolkit for Advanced Response Digital) and is based on the Ubuntu operating system. It has been designed from scratch to offer some of the best computer forensics open source and incident response tools that can be used by individuals, IT auditors, investigators, military, and police.
6. Samurai Web Testing Framework
The Samurai Web Testing Framework is a live Linux environment which has been pre-configured to function as a web pen-testing environment. The CD contains the best of open source and free tools that focus on testing and websites that attack. In the development of this environment, it is based on our selection of tools that we use in our practice of security. Hence, it includes the tools that were used in the four steps of a pen-test web.
7. Network Security Toolkit
The Network Security Toolkit (NST) is a Live CD based on Linux that provides a set of security tools computing and open source network to carry out routine security tasks and diagnostic networks and tracing. The distribution can be used as an analysis of network security, validation and monitoring tool for servers hosting virtual machines. NST has management capabilities similar to Fedora packages and maintains its own repository of additional packages.
8. Bugtraq
Bugtraq is a mailing list dedicated to safety issues in computers. On-topic issues new discussions about vulnerabilities, security-related notices providers, operating methods, and how to fix them. This is a mailing list of large volume, and almost all new vulnerabilities are there. Bugtraq computer freaks and experienced developers are discussed, is available in Debian, Ubuntu and openSUSE 32 and 64-bit architectures.
9. NodeZero
NodeZero is an open source system based on the operating core derived from the most popular Linux distribution in the world, Ubuntu, and designed to be used for penetration testing operations. The distribution can be downloaded as an ISO image live DVD, which will also take place on computers that support both 32-bit (x86) and 64-bit (x86_64) instruction set. Besides the fact that it allows you to start the live system, start menu contains several advanced features such as the ability to perform a diagnostic test of system memory, boot from local disk options, start the installer directly and to start in safe graphics mode, text mode or in debug mode.
Default graphical desktop environment NodeZero is powered by GNOME, which uses the classic GNOME interface. It has a design of two panels and uses the default software repositories of Ubuntu.
10. Pentoo
Pentoo is a Live CD and Live USB OS designed for penetration testing and security assessment. It is based on Gentoo Linux, Pentoo is offered both as 32-bit and 64-bit live cd which is installable. Pentoo is also available as a superposition of an existing Gentoo installation. It has conductors packet injection patched wifi, GPGPU cracking software, and plenty of tools for penetration testing and security assessment. The kernel includes Pentoo grsecurity and PAX hardening and additional patches with the binary compiled from a string of hardened with the latest nightly versions of some tools that are available.
#11 Live Hacking OS
Well, this Linux distro actually comes with some useful hacking tools which are often used in penetration testing or ethical hacking purpose. Live Hacking OS consists of the GNOME inbuilt. The operating system is really easy to operate and it can work on less RAM.
#12 Knoppix STD
This is another best Linux distro which focuses on tools for computer security. Knoppix STD brings some advanced tools for Password cracking, Firewalls, Network Utilities, Honeypots, Wireless Networking and more. This is one of the most used operating systems for Hackers.
#13 Cyborg Hawk
Cyborg Hawk is a new operating system which is based on Ubuntu Linux. Well, lots of hackers talk about Cyborg hawk and its one of the most powerful and cutting-edge penetration testing distribution that has ever been created. The operating system houses more than 700 tools for different purposes.
#14 Blackbuntu
Well, this is another operating system which is based on Linux and it was specially developed for penetration testing. Well, the operating system is very famous amongst hackers and it offers an awesome platform to learn Information security.
#15 Weakerth4n
Well, this is another best operating system which is used by professional hackers. WeakerTh4n actually comes with lots of hacking tools and it's actually a modern operating system for WiFi Hacking. Some of the wireless tools include SQL Hacking, Password Cracking, WiFi attacks, Cisco exploitation and more.
miércoles, 20 de mayo de 2020
Hacking Everything With RF And Software Defined Radio - Part 3
Reversing Device Signals with RFCrack for Red Teaming
@GarrGhar
Mostly because someone didn't want to pay for a new clicker that was lost LOL
Websites:
Console Cowboys: http://consolecowboys.com
CC Labs: http://cclabs.io
CC Labs Github for RFCrack Code:
https://github.com/cclabsInc/RFCrack
Mostly because someone didn't want to pay for a new clicker that was lost LOL
Websites:
Console Cowboys: http://consolecowboys.com
CC Labs: http://cclabs.io
CC Labs Github for RFCrack Code:
https://github.com/cclabsInc/RFCrack
Contrived Scenario:
Bob was tasked to break into XYZ corporation, so he pulled up the facility on google maps to see what the layout was. He was looking for any possible entry paths into the company headquarters. Online maps showed that the whole facility was surrounded by a security access gate. Not much else could be determined remotely so bob decided to take a drive to the facility and get a closer look.
Bob parked down the street in view of the entry gate. Upon arrival he noted the gate was un-manned and cars were rolling up to the gate typing in an access code or simply driving up to the gate as it opening automatically. Interestingly there was some kind of wireless technology in use.
How do we go from watching a car go through a gate, to having a physical device that opens the gate?
We will take a look at reversing a signal from an actual gate to program a remote with the proper RF signal. Learning how to perform these steps manually to get a better understanding of how RF remotes work in conjunction with automating processes with RFCrack.
Items used in this blog:
Garage Remote Clicker: https://goo.gl/7fDQ2NYardStick One: https://goo.gl/wd88sr
RTL SDR: https://goo.gl/B5uUAR
Walkthrough Video:
Remotely sniffing signals for later analysis:
In the the previous blogs, we sniffed signals and replayed them to perform actions. In this blog we are going to take a look at a signal and reverse it to create a physical device that will act as a replacement for the original device. Depending on the scenario this may be a better approach if you plan to enter the facility off hours when there is no signal to capture or you don't want to look suspicious.
Recon:
Lets first use the scanning functionality in RFCrack to find known frequencies. We need to understand the frequencies that gates usually use. This way we can set our scanner to a limited number of frequencies to rotate through. The smaller rage of frequencies used will provide a better chance of capturing a signal when a car opens the target gate. This would be beneficial if the scanning device is left unattended within a dropbox created with something like a Kali on a Raspberry Pi. One could access it from a good distance away by setting up a wifi hotspot or cellular connection.
Based on research remotes tend to use 315Mhz, 390Mhz, 433Mhz and a few other frequencies. So in our case we will start up RFCrack on those likely used frequencies and just let it run. We can also look up the FCID of our clicker to see what Frequencies manufactures are using. Although not standardized, similar technologies tend to use similar configurations. Below is from the data sheet located at https://fccid.io/HBW7922/Test-Report/test-report-1755584 which indicates that if this gate is compatible with a universal remote it should be using the 300,310, 315, 372, 390 Frequencies. Most notably the 310, 315 and 390 as the others are only on a couple configurations.
RFCrack Scanning:
Since the most used ranges are 310, 315, 390 within our universal clicker, lets set RFCrack scanner to rotate through those and scan for signals. If a number of cars go through the gate and there are no captures we can adjust the scanner later over our wifi connection from a distance.
Destroy:RFCrack ficti0n$ python RFCrack.py -k -f 310000000 315000000 390000000
Currently Scanning: 310000000 To cancel hit enter and wait a few seconds
Currently Scanning: 315000000 To cancel hit enter and wait a few seconds
Currently Scanning: 390000000 To cancel hit enter and wait a few seconds
e0000000000104007ffe0000003000001f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c00000000000000000000000000000000000000000000e0007f037fe007fc00ff801ff07ffe0fffe1fffc3fff0001f00000000000000000000000000000000000000000000003809f641fff801ff003fe00ffc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000003c0bff01bdf003fe007fc00ff83fff07ffe0fffc1fff8001f0000000000000000000000000000000000000000000000380000000000000000002007ac115001fff07ffe0fffc000f8000000000000000000000000000000000000000
Currently Scanning: 433000000 To cancel hit enter and wait a few seconds
Example of logging output:
From the above output you will see that a frequency was found on 390. However, if you had left this running for a few hours you could easily see all of the output in the log file located in your RFCrack/scanning_logs directory. For example the following captures were found in the log file in an easily parseable format:
Destroy:RFCrack ficti0n$ cd scanning_logs/
Destroy:scanning_logs ficti0n$ ls
Dec25_14:58:45.log Dec25_21:17:14.log Jan03_20:12:56.log
Destroy:scanning_logs ficti0n$ cat Dec25_21\:17\:14.log
A signal was found on :390000000
c0000000000000000000000000008000000000000ef801fe003fe0fffc1fff83fff07ffe0007c0000000000000000000000000000000000000000000001c0000000000000000050003fe0fbfc1fffc3fff83fff0003e00000000000000000000000000000000000000000000007c1fff83fff003fe007fc00ff83fff07ffe0fffc1fff8001f00000000000000000000000000000000000000000000003e0fffc1fff801ff003fe007fc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000001f07ffe0dffc00ff803ff007fe0fffc1fff83fff07ffe0007c000000000000000000000000000000000000000000
A signal was found on :390000000
e0000000000104007ffe0000003000001f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c00000000000000000000000000000000000000000000e0007f037fe007fc00ff801ff07ffe0fffe1fffc3fff0001f00000000000000000000000000000000000000000000003809f641fff801ff003fe00ffc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000003c0bff01bdf003fe007fc00ff83fff07ffe0fffc1fff8001f0000000000000000000000000000000000000000000000380000000000000000002007ac115001fff07ffe0fffc000f8000000000000000000000000000000000000000
Analyzing the signal to determine toggle switches:
Ok sweet, now we have a valid signal which will open the gate. Of course we could just replay this and open the gate, but we are going to create a physical device we can pass along to whoever needs entry regardless if they understand RF. No need to fumble around with a computer and look suspicious. Also replaying a signal with RFCrack is just to easy, nothing new to learn taking the easy route.
The first thing we are going to do is graph the capture and take a look at the wave pattern it creates. This can give us a lot of clues that might prove beneficial in figuring out the toggle switch pattern found in remotes. There are a few ways we can do this. If you don't have a yardstick at home you can capture the initial signal with your cheap RTL-SDR dongle as we did in the first RF blog. We could then open it in audacity. This signal is shown below.
The other option is let RFCrack help you out by taking a signal from the log output above and let RFCrack plot it for you. This saves time and allows you to use only one piece of hardware for all of the work. This can easily be done with the following command:
Destroy:RFCrack ficti0n$ python RFCrack.py -n -g -u 1f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c
-n = No yardstick attached
-g = graph a single signal
-u = Use this piece of data
From the graph output we see 2 distinct crest lengths and some junk at either end we can throw away. These 2 unique crests correspond to our toggle switch positions of up/down giving us the following 2 possible scenarios using a 9 toggle switch remote based on the 9 crests above:
Possible toggle switch scenarios:
- down down up up up down down down down
- up up down down down up up up up
Configuring a remote:
Proper toggle switch configuration allows us to program a universal remote that sends a signal to the gate. However even with the proper toggle switch configuration the remote has many different signals it sends based on the manufacturer or type of signal. In order to figure out which configuration the gate is using without physically watching the gate open, we will rely on local signal analysis/comparison.
Programming a remote is done by clicking the device with the proper toggle switch configuration until the gate opens and the correct manufacturer is configured. Since we don't have access to the gate after capturing the initial signal we will instead compare each signal from he remote to the original captured signal.
Comparing Signals:
This can be done a few ways, one way is to use an RTLSDR and capture all of the presses followed by visually comparing the output in audacity. Instead I prefer to use one tool and automate this process with RFCrack so that on each click of the device we can compare a signal with the original capture. Since there are multiple signals sent with each click it will analyze all of them and provide a percent likelihood of match of all the signals in that click followed by a comparing the highest % match graph for visual confirmation. If you are seeing a 80-90% match you should have the correct signal match.
Note: Not every click will show output as some clicks will be on different frequencies, these don't matter since our recon confirmed the gate is communicating on 390Mhz.
In order to analyze the signals in real time you will need to open up your clicker and set the proper toggle switch settings followed by setting up a sniffer and live analysis with RFCrack:
Open up 2 terminals and use the following commands:
#Setup a sniffer on 390mhz
Setup sniffer: python RFCrack.py -k -c -f 390000000.
Setup sniffer: python RFCrack.py -k -c -f 390000000.
#Monitor the log file, and provide the gates original signal
Setup Analysis: python RFCrack.py -c -u 1f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c -n.
Setup Analysis: python RFCrack.py -c -u 1f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c -n.
Cmd switches used
-k = known frequency
-c = compare mode
-f = frequency
-n = no yardstick needed for analysis
Make sure your remote is configured for one of the possible toggle configurations determined above. In the below example I am using the first configuration, any extra toggles left in the down position: (down down up up up down down down down)
Analyze Your Clicks:
Now with the two terminals open and running click the reset switch to the bottom left and hold till it flashes. Then keep clicking the left button and viewing the output in the sniffing analysis terminal which will provide the comparisons as graphs are loaded to validate the output. If you click the device and no output is seen, all that means is that the device is communicating on a frequency which we are not listening on. We don't care about those signals since they don't pertain to our target.
At around the 11th click you will see high likelihood of a match and a graph which is near identical. A few click outputs are shown below with the graph from the last output with a 97% match. It will always graph the highest percentage within a click. Sometimes there will be blank graphs when the data is wacky and doesn't work so well. This is fine since we don't care about wacky data.
You will notice the previous clicks did not show even close to a match, so its pretty easy to determine which is the right manufacture and setup for your target gate. Now just click the right hand button on the remote and it should be configured with the gates setup even though you are in another location setting up for your test.
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.05
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.12
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.20
Percent Chance of Match for press is: 0.19
Percent Chance of Match for press is: 0.25
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.93
Percent Chance of Match for press is: 0.93
Percent Chance of Match for press is: 0.97
Percent Chance of Match for press is: 0.90
Percent Chance of Match for press is: 0.88
Percent Chance of Match for press is: 0.44
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
Graph Comparison Output for 97% Match:
Conclusion:
You have now walked through successfully reversing a toggle switch remote for a security gate. You took a raw signal and created a working device using only a Yardstick and RFCrack. This was just a quick tutorial on leveraging the skillsets you gained in previous blogs in order to learn how to analyze RF signals within embedded devices. There are many scenarios these same techniques could assist in. We also covered a few new features in RF crack regarding logging, graphing and comparing signals. These are just a few of the features which have been added since the initial release. For more info and other features check the wiki.
Related posts
Suscribirse a:
Entradas (Atom)